各位老铁们,大家好,今天由我来为大家分享共沉淀剂种类,以及沉淀剂种类的确定的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注搜藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!
化学中沉淀一共有几种?CUSO4沉淀吗?
化学中沉淀,也就是不溶于溶剂后,形成的固体胶体等
一般说的溶剂是水所以,硫酸铜不是沉淀
可以记住下面的口诀,不会有不知道的
钾钠铵盐溶水快 , ①
硫酸盐除去钡铅钙。 ②
氯化物不溶氯化银,
硝酸盐溶液都透明。 ③
口诀中未有皆下沉。 ④
注:
①钾钠铵盐都溶于水;
②硫酸盐中只有硫酸钡、硫酸铅、硫酸钙不溶;
③硝酸盐都溶于水;
④口诀中没有涉及的盐类都不溶于水;
溶解性口诀二
钾、钠、铵盐、硝酸盐;
氯化物除银、亚汞;
硫酸盐除钡和铅;
碳酸、磷酸盐,只溶钾、钠、铵。
说明,以上四句歌谣概括了8类相加在水中溶解与不溶的情况。
溶解性口诀三
钾钠铵硝皆可溶、盐酸盐不溶银亚汞;
硫酸盐不溶钡和铅、碳磷酸盐多不溶。
多数酸溶碱少溶、只有钾钠铵钡溶
溶解性口诀四
钾、钠、硝酸溶, (钾盐、钠盐和硝酸盐都溶于水。)
盐酸除银(亚)汞, (盐酸盐里除氯化银和氯化亚汞外都溶。)
再说硫酸盐,不容有钡、铅, (硫酸盐中不溶的是硫酸钡和硫酸铅。)
其余几类盐, (碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物)
只溶钾、钠、铵, (只有相应的钾盐、钠盐和铵盐可溶)
最后说碱类,钾、钠、铵和钡。 (氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶)
另有几种微溶物,可单独记住。
溶解性口诀五
钾钠铵盐硝酸盐
完全溶解不困难
氯化亚汞氯化银
硫酸钡和硫酸铅 钾钠铵盐溶水快 , ①
硫酸盐除去钡铅钙。 ②
氯化物不溶氯化银,
硝酸盐溶液都透明。 ③
口诀中未有皆下沉。 ④
注:
①钾钠铵盐都溶于水;
②硫酸盐中只有硫酸钡、硫酸铅、硫酸钙不溶;
③硝酸盐都溶于水;
④口诀中没有涉及的盐类都不溶于水;
溶解性口诀二
钾、钠、铵盐、硝酸盐;
氯化物除银、亚汞;
硫酸盐除钡和铅;
碳酸、磷酸盐,只溶钾、钠、铵。
说明,以上四句歌谣概括了8类相加在水中溶解与不溶的情况。
溶解性口诀三
钾钠铵硝皆可溶、盐酸盐不溶银亚汞;
硫酸盐不溶钡和铅、碳磷酸盐多不溶。
多数酸溶碱少溶、只有钾钠铵钡溶
溶解性口诀四
钾、钠、硝酸溶, (钾盐、钠盐和硝酸盐都溶于水。)
盐酸除银(亚)汞, (盐酸盐里除氯化银和氯化亚汞外都溶。)
再说硫酸盐,不容有钡、铅, (硫酸盐中不溶的是硫酸钡和硫酸铅。)
其余几类盐, (碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物)
只溶钾、钠、铵, (只有相应的钾盐、钠盐和铵盐可溶)
最后说碱类,钾、钠、铵和钡。 (氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶)
另有几种微溶物,可单独记住。
溶解性口诀五
钾钠铵盐硝酸盐
完全溶解不困难
氯化亚汞氯化银
硫酸钡和硫酸铅
生成沉淀记心间
氢硫酸盐和碱类
碳酸磷酸硝酸盐
可溶只有钾钠铵
酸除银汞(亚)。硫酸去铅钡,磷盐多不溶(磷酸二氢盐溶解)。碳硅和亚硫(含亚硫酸盐与硫化物),钠后(溶解性表的钠之后)多不溶。微溶氯化铅,硫酸钙银汞。镁盐碳亚硫,碱酸钙和硅。(最后两句说的是微溶物质) 硫化钡、硫化钙、硫化镁、硫化铝、硫化铁、硫化铬在水溶液中均存在,但是他们都极易水解
生成沉淀记心间
氢硫酸盐和碱类
碳酸磷酸硝酸盐
可溶只有钾钠铵
酸除银汞(亚)。硫酸去铅钡,磷盐多不溶(磷酸二氢盐溶解)。碳硅和亚硫(含亚硫酸盐与硫化物),钠后(溶解性表的钠之后)多不溶。微溶氯化铅,硫酸钙银汞。镁盐碳亚硫,碱酸钙和硅。(最后两句说的是微溶物质) 硫化钡、硫化钙、硫化镁、硫化铝、硫化铁、硫化铬在水溶液中均存在,但是他们都极易水解
为什么有机共沉淀剂的选择性高于无机共沉淀剂
下午好,有机沉淀剂选择性高于无机沉淀剂,因为它属于特殊的分子结构,一般有机沉淀剂既有亲水端,也有亲油端,分子能在需要沉淀的物质表面有选择性的定向排列和分布促沉。最常见的是PAM,PAAS这些,除了定向排列外还可以形成胶束。无机沉淀剂,由于只能有亲水端,而且在水中需要发生电离,只能和解离后相反电荷的离子相吸附,性能非常弱,而且它通常对非极性分子无吸附能力。这方面更多细节你可以参考下絮凝剂的基本定义。
软磁铁氧体材料的软磁铁氧体材料粉料的制备
软磁铁氧体微粉的制备大多采用火法和湿化学法两种, 铁氧体微粉的制备主要采用湿化方法,软磁铁氧体微粉的制备主要采用共沉淀法、溶胶-凝胶法、水热法等湿化学法。下面以湿法工艺制备Mn-Zn铁氧体微粉为实例进行讲述。 化学共沉淀法制备铁氧体微粉是选择一种合适的可溶于水的金属盐类, 按所制备材料组成计量, 将金属盐溶解, 并以离子状态混合均匀, 再选择一种合适的沉淀剂, 将金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得铁氧体微粉。因此化学共沉淀法是一种最经济的制备铁氧体微粉的方法。由于其所制备的粉体微粒具有纯度高, 粒度分布均匀, 活性好等特点, 使之近年来得到深入研究及广泛应用。共沉淀法按其沉淀剂的不同可分为:碳酸盐、草酸盐和氢氧化物等若干种方法。
1)氢氧化物共沉淀法这种方法可分为中和法和氧化法。中和法就是将三价铁离子和组成铁氧体材料的其它金属盐溶液, 用碱中和, 在一定条件下, 直接在水溶液中形成尖晶石型铁氧体。其离子反应方程式为:2Fe3++ M 2++ OH—– MO- Fe2O 3↓中和法形成铁体的主要影响因素是溶液 pH值和温度( 一般 pH 为 10~13, 温度近沸) 。
氧化法的主要工艺是先配制含有二价铁离子和其它二价金属离子的硫酸盐水溶液, 加过量的强碱溶液, 保持 pH 为一定值, 即形成悬浮液, 然后往此溶液中通入空气氧化而逐渐生成铁氧体沉淀物。铁氧体的形成及其晶粒大小, 受溶液 pH 值、温度等因素影响。在 pH 10 时, 铁氧体颗粒大小, 随金属阳离子浓度增大而增大, 随温度降低而减小。要制备具有实用价值、结构完美, 并具有一定颗粒大小的沉淀物, 必须选择适当的条件才能达到。
2)碳酸盐共沉淀法
碳酸盐共沉淀法是它是在金属盐溶液中加入适当的沉淀剂碳酸盐, 得到前驱体沉淀物, 再焙烧成粉体。在共沉淀时, 为了防止钠离子的污染, 选用 NH3- NH4HCO 3 作沉淀剂, 可消除使用单一沉淀剂所产生的沉淀过滤困难和后烧结困难等蔽端。此法工艺简单, 易于操作, 成本较低, 具有较好的经济价值。 溶胶-凝胶法是 20 世纪 90 年代兴起的一种新的湿化学合成方法, 被广泛的应用于各种无机功能材料的合成当中。此法是将金属有机化合物如醇盐等溶解于有机溶剂中, 通过加入纯水等使其水解、聚合、形成溶胶, 再采取适当的方法使之形成凝胶, 并在真空状态下低温干燥, 得疏松的干凝胶, 再作高温煅烧处理, 即可制得纳米级氧化物粉末, 凝胶的结构和性质在很大程度上取决于其后的干燥致密过程, 并最终决定材料的性能。
此法制备的粉体纯度高, 均匀性好, 粒经小 ,尤其对多组分体系, 其均匀度可达到分子或原子 水平。
烧结温度比高温固相反应温度低, 晶粒大小随温度和时间的增加而增大, 完全晶化温度约为750 ℃左右。与共沉淀法相比, 该法合成的纳米粉体仅在烧结时才出现团聚, 且在不高的温度( 700~800 ℃) 晶化完全。这样可以节约能源, 避免由于烧结温度高而从反应器中引入杂质, 同时烧前易部分形成凝胶, 具有较大的表面积, 利于产物的形成。是一种较好的制备超微粉的方法 。 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。
11世纪就发明了制造人工永磁材料的方法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 软磁材料在工业中的应用始于十九世纪末,是伴随着电力电工及电讯技术的兴起而出现的,其应用范围极其广泛。软磁材料不仅应用于家电领域、信息化领域、汽车领域和其他配套领域,更主要的是软磁材料作为电子元器件生产的主要原材料为其带来了源源不断的需求。近年来,其市场需求量逐年上升,产品种类也日益增多,成为磁性材料行业发展的一大亮点。根据权威机构统计数据的显示,2004年中国软磁材料产量超过10万吨,实现销售收入约70亿元,其产量占全球磁性材料总产量的33%左右,而实现的销售收入则占全球磁性材料总销售收入的40%左右。
国内高性能永磁铁氧体磁性材料(相当于日本TDK产品的FB4和FB5及以上系列)的需求占永磁铁氧体磁性材料总需求的比例将由2000年的40%左右(不足6万吨)增至2005年的70%以上(约15万吨)高性能软磁铁氧体磁性材料(相当于日本TDK产品的PC40和H5C2及以上系列)的需求占软磁铁氧体磁性材料总需求的比例将由2000年的10%以下增至2005年的30%以上(PC40及以上2万吨,H5C2及以上1万吨) 人类研究铁氧体是从20世纪30年代开始的。
20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料。
40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。20世纪50年代是铁氧体蓬勃发展的时期。1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶系中开发出平面型超高频铁氧体,同时发现了合稀土元素的石榴石型铁氧体,从而形成了尖晶石型、磁铅石型和石榴石型三大晶系铁氧体材料体系。 进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料——非晶态软磁合金应该说铁氧体的问世是强磁学和磁性材料发展史上的一个重要里程碑。至今铁氧体磁性材料已在众多高技术领域得到了广泛的应用。
什么是共沉淀现象?产生共沉淀的原因有哪几种?
共沉淀现象是指一种沉淀物从溶液中析出时,引起某些可溶性物质一起沉淀的现象。共有表面吸附、吸留(包藏)和混晶三种。具体: (1)表面吸附表面吸附是由沉淀表面构晶离子的力场不平衡引起的。以AgCl沉淀为例,晶体内部的每个Ag+离子周围排布着6个Cl-离子,每个Cl-离子周围也排布着6个Ag+离子,力场处于平衡状态。晶体表面的每个Ag+(或Cl-)离子仅与5个相反电荷的构晶离子为邻, 从而导致力场不平衡。晶棱和晶角上构晶离子的力场不平衡状态更甚。力场不平衡的构晶离子具有吸附异电荷微粒的能力。例如, AgCl沉淀表面能吸附过量沉淀剂(NaCl)带进溶液中的Cl-离子形成吸附层,吸附层的Cl-离子还可以通过静电引力吸附溶液中的Na+离子和H3O+离子形成扩散层,扩散层中的部分离子还可因Cl-离子的强烈吸引力而进入吸附层。吸附杂质的多少与沉淀的总表面积和溶液的温度有关。对同量沉淀而言, 颗粒越小比表面越大, 与溶液的接触面积越大, 吸附的杂质也越多。无定形沉淀的比表面特别大, 表面吸附现象也特别严重。由于吸附是放热过程, 因而提高温度有利于减少对杂质的吸附。溶液中的离子可被沉淀表面吸附, 表面吸附的离子也可重新进入溶液。因而通过洗涤操作可使沉淀净化。(2)吸留沉淀生成速率太快, 导致表面吸附的杂质离子来不及离开沉淀表面, 而被后来沉淀上去的离子覆盖在沉淀内部的共沉淀现象叫吸留。洗涤方法不能除去由吸留造成玷污, 除去这类杂质一般通过沉淀陈化或重结晶的途径实现。(3)混晶或固溶体的生成晶形沉淀都有一定的晶体结构。如果溶液中存在与构晶离子电荷相同、半径相近的杂质离子, 晶格中构晶离子就可能部分地被杂质离子取代而形成混晶, 混晶是固溶体的一种。生成混晶的条件十分严格,但只要具备了条件,避免生成混晶也困难。例如,Pb2+离子和Ba2+离子的电荷和半径满足生成混晶的条件, 只要有Pb2+离子存在(不论其浓度多么低),BaSO4沉淀过程中难以避免生成BaSO4-PbSO4混晶。以混晶方式存在的杂质不能通过洗涤方法除去,陈化的方法也不奏效。如果有这种杂质, 只能在沉淀操作之前预先分离。
OK,本文到此结束,希望对大家有所帮助。
声明:本站仅提供存储服务。部分图文来源于网络,版权归原作者所有,不代表本立场或观点。如有侵权,请联系删除。
作者:小黄同学,本文链接:https://www.vibaike.net/article/1920538.html